Search results for "Urysohn and completely Hausdorff spaces"

showing 6 items of 6 documents

Cardinal estimates involving the weak Lindelöf game

2021

AbstractWe show that if X is a first-countable Urysohn space where player II has a winning strategy in the game $$G^{\omega _1}_1({\mathcal {O}}, {\mathcal {O}}_D)$$ G 1 ω 1 ( O , O D ) (the weak Lindelöf game of length $$\omega _1$$ ω 1 ) then X has cardinality at most continuum. This may be considered a partial answer to an old question of Bell, Ginsburg and Woods. It is also the best result of this kind since there are Hausdorff first-countable spaces of arbitrarily large cardinality where player II has a winning strategy even in the weak Lindelöf game of countable length. We also tackle the problem of finding a bound on the cardinality of a first-countable space where player II has a wi…

Algebra and Number TheoryCardinal invariants Cardinality bounds First-countable Lindelöf Topological game Weakly LindelöfApplied MathematicsFirst-countable spaceHausdorff spaceESPAÇOS TOPOLÓGICOSUrysohn and completely Hausdorff spacesCombinatoricsComputational MathematicsTopological gameCardinalityCompact spaceCountable setSettore MAT/03 - GeometriaGeometry and TopologyContinuum (set theory)AnalysisMathematicsRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
researchProduct

Visible parts and dimensions

2003

We study the visible parts of subsets of n-dimensional Euclidean space: a point a of a compact set A is visible from an affine subspace K of n, if the line segment joining PK(a) to a only intersects A at a (here PK denotes projection onto K). The set of all such points visible from a given subspace K is called the visible part of A from K. We prove that if the Hausdorff dimension of a compact set is at most n−1, then the Hausdorff dimension of a visible part is almost surely equal to the Hausdorff dimension of the set. On the other hand, provided that the set has Hausdorff dimension larger than n−1, we have the almost sure lower bound n−1 for the Hausdorff dimensions of visible parts. We al…

Applied MathematicsMathematical analysisMinkowski–Bouligand dimensionMathematics::General TopologyGeneral Physics and AstronomyDimension functionStatistical and Nonlinear PhysicsUrysohn and completely Hausdorff spacesEffective dimensionCombinatoricsPacking dimensionHausdorff distanceHausdorff dimensionMathematics::Metric GeometryHausdorff measureMathematical PhysicsMathematicsNonlinearity
researchProduct

Hausdorff dimension from the minimal spanning tree

1993

A technique to estimate the Hausdorff dimension of strange attractors, based on the minimal spanning tree of the point distribution is extensively tested in this work. This method takes into account in some sense the infimum requirement appearing in the definition of the Hausdorff dimension. It provides accurate estimates even for a low number of data points and it is especially suited to high-dimensional systems.

CombinatoricsDiscrete mathematicsHausdorff distancePacking dimensionHausdorff dimensionMathematicsofComputing_NUMERICALANALYSISMinkowski–Bouligand dimensionDimension functionHausdorff measureUrysohn and completely Hausdorff spacesEffective dimensionMathematicsPhysical Review E
researchProduct

On product of p-sequential spaces

2016

Abstract The product of finitely many regular p-compact p-sequential spaces is p-compact p-sequential for any free ultrafilter p as it follows from [5] . In the paper is produced an example of a Hausdorff p-compact p-sequential space whose square is not p-sequential. It is also given an example of a space which is sP-radial, wP-radial, vwP-radial for any P ⊂ μ ( τ ) but its square is neither sP-radial nor wP-radial nor vwP-radial space.

Discrete mathematicsInner product spaceProduct (mathematics)UltrafilterHausdorff spaceRegular spaceAstrophysics::Earth and Planetary AstrophysicsGeometry and TopologyUrysohn and completely Hausdorff spacesSpace (mathematics)Normal spaceMathematicsTopology and its Applications
researchProduct

Countably compact weakly Whyburn spaces

2015

The weak Whyburn property is a generalization of the classical sequential property that was studied by many authors. A space X is weakly Whyburn if for every non-closed set \({A \subset X}\) there is a subset \({B \subset A}\) such that \({\overline{B} \setminus A}\) is a singleton. We prove that every countably compact Urysohn space of cardinality smaller than the continuum is weakly Whyburn and show that, consistently, the Urysohn assumption is essential. We also give conditions for a (countably compact) weakly Whyburn space to be pseudoradial and construct a countably compact weakly Whyburn non-pseudoradial regular space, which solves a question asked by Angelo Bella in private communica…

Discrete mathematicsSingletonGeneralizationGeneral Mathematics010102 general mathematicsGeneral Topology (math.GN)Mathematics::General TopologyPrivate communicationUrysohn and completely Hausdorff spacesWeak Whyburn property convergence Lindelof P -space Urysohn countably compact pseudoradial.Space (mathematics)01 natural sciences010101 applied mathematicsCombinatoricsMathematics::LogicCardinalityFOS: MathematicsRegular spaceSettore MAT/03 - GeometriaContinuum (set theory)0101 mathematicsMathematicsMathematics - General Topology
researchProduct

Planar Sobolev homeomorphisms and Hausdorff dimension distortion

2011

We investigate how planar Sobolev-Orlicz homeomorphisms map sets of Hausdorff dimension less than two. With the correct gauge functions the generalized Hausdorff measures of the image sets are shown to be zero.

Mathematics::Functional AnalysisPure mathematicsApplied MathematicsGeneral MathematicsMathematical analysisMathematics::General TopologyDimension functionUrysohn and completely Hausdorff spacesEffective dimensionHausdorff distancePacking dimensionHausdorff dimensionHausdorff measureOuter measureMathematicsProceedings of the American Mathematical Society
researchProduct